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Recent statistical theories for the failure of fibrous composities focus on the initiation and 
growth of clusters of broken fibres within the composite. These theoreis require the probability 
distribution for fibre strength at the length scale of micromechanical load transfer around a 
cluster of broken fibres. Such lengths are of the order of 10 to 150 fibre diameters, and thus 
the associated strengths have previously been unmeasurable by direct means. Using 
Weilbull/weakest-link rules, researchers have resorted to extrapolation of tension test results 
from gauge lengths two orders of magnitude longer. In this paper, atechnique is developed to 
study the break progression of a single graphite fibre in an epoxy microcomposite tape, where 
the graphite fibre is flanked by two, proof-tested, glass fibres. These results are interpreted 
using a Weibull/Poisson model of the break progression, the number of breaks in the graphite 
fibre as a function of applied strain, which accounts for stress decay at the fibre ends. It is 
shown that such extrapolations of tension test data are too optimistic. In addition, different 
fibres from the same yarn cross-section, apparently have different flaw populations, unlike that 
which occurs at longer gauge lengths. 

1. I n t r o d u c t i o n  
In a widely accepted statistical model for the failure of 
a unidirectional composite, the composite is viewed as 
a chain of short bundles under tension. Failure of the 
composite is caused by the failure of the weakest 
bundle, whose failure is initiated bY the failure of 
single fibres within the bundle. Various versions of the 
model have been studied both in the setting of short- 
term strength [1-8] and long-term, creep-rupture 
[9, 10]. Within a bundle, the fibres share load accord- 
ing to a rule which reflects lateral load transfer from 
failed to surviving fibres through shear in the matrix. 
The length of a bundle is characteristically an effective 
load transfer length for a fibre adjacent to a break, an 
idea which originated with Rosen [6]. In recent ver- 
sions of the model, catastrophic failure is preceded by 
the growth of small clusters of fibre breaks wherein 
very short fibre segments see ever increasing loads 
until the failure of these adjacent fibres is virtually 
certain. The effective lengths over which these fibre 
segments are overloaded (taking into account statist- 
ical considerations of flaw density) are typically from 
10 to 150 fibre diameters depending on such factors as 
the ratio of the fibre Young's modulus to the matrix 
shear modulus, the degree of plastic deformation and 
debonding near a break, and the variability in fibre 
strength. Because many commercial fibres have dia- 
meters of 4 to 15 lam, the failure models thus require 

knowledge of the strength distribution for fibres at a 
length scale from 0.05 to 1 mm. (See Phoenix et  al. [9] 
for discussion on these points.) 

The usual method for determining the distribution 
for fibre strength is by simple tension tests following 
standard techniques (ASTM D3379). Whereas a 
20 mm gauge length is common, replications are often 
done at more than one gauge length to enhance extra- 
polation of the strength to shorter gauge lengths. 
But, because of technical difficulties with alignment, 
clamping and the tedium of manual testing, the gauge 
length is rarely less than 10 mm. Thus to determine the 
distribution for strength at much shorter length scales, 
as required by the above failure model, some version 
of Weibull/weakest-link scaling must be used. 

In the simplest extrapolation, the Weibull scale 
parameter for strength, s~, at the length, 6, required by 
the model is approximately 

s~ = s i . ( L / 6 )  1/p (1) 

where L is the gauge length from the standard tension 
tests, and 9 is the Weibull shape parameter for fibre 
strength. For example, given a standard tensile test 
gauge length, L, of 20 ram, a characteristic load trans- 
fer length, 6, of 0.5 ram, and a Weibull shape para- 
meter, p, of 5, yields s~ = 2.1 (sL) which states that the 
strength at the length scale of the model is more than 
twice that measured in the tension tests. While 
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strengths of this magnitude have been observed from 
sophisticated microbending or loop tests, an extra- 
polation of this magnitude constitutes a large leap 
of faith and may be very inaccurate. This weakness 
compromises the predictive capability of the above 
models. 

In the single-fibre composite test, a single fibre is 
embedded in a matrix such as epoxy to form a small 
dog-bone shape, and the dog-bone is increasingly 
strained to produce repeated fragmentation of the 
fibre. At some limiting strain, fragmentation ceases 
resulting in a distribution of short fibre lengths. Usu- 
ally this final distribution is used with fibre strength 
statistics, extrapolated from tension tests, to determine 
the interfacial shear strength between the fibre and 
matrix. (See Netravali et al. [11] for examples and 
further references.) In this paper the emphasis is shif- 
ted from the estimation of the fibre interface strength 
to the estimation of the fibre strength statistics at 
gauge lengths comparable to the load transfer lengths 
around broken fibres in an actual composite. The 
experimental data, the number of breaks versus strain, 
can be gathered easily especially using acoustic emis- 
sion [12], but the analysis requires an independent 
estimate of the average interfacial shear strength of the 
fibre/matrix system. 

In this paper, we develop analytical approximations 
to the number of breaks as a function of strain for a 
single fibre in a composite tape. These approximations 
are easy to use and compare very favourably to results 
from a Monte Carlo simulation of the full problem 
by Henstenburg and Phoenix [13]. Rather than work 
with a single-filament composite, we work with a 
three-fibre composite, referred to as a "microcompos- 
ire", wherein a single graphite fibre is flanked on each 
side by a much larger glass fibre which has been proof- 
tested to strain that is roughly twice the strain to 
failure of the graphite fibre. This arrangement leads 
not only to better control of the applied strain at all 
points along the specimen, but also produces stress 
profiles in the fibres and matrix around fibre breaks 
more indicative of that which occurs in a large com- 
posite. The details of these stress profiles are investi- 
gated in a separate paper [14], and results from that 
study will be used in this analysis. We begin with a 
discussion of the fabrication of the three-fibre micro- 
composite tape. 

2. Specimen fabrication 
2.1. Mater ia ls  
The three-fibre microcomposites were composed of 
IM-6 graphite fibres, (Hercules Corporation), SK glass 
fibres (Owens Corning Fiberglas), and DER 331/DEH 
26 epoxy system (Dow Chemical Corporation). The 
graphite fibres were surface treated, but not coated 
with a surface finish, and were extracted from a 12 000 
filament tow. Their nominal strain to failure at a 
gauge length of 20 mm is in the range of 1% to 2%, 
and they have an average modulus of elasticity of 
280 GPa. The SK glass fibres were coated with an 
epoxy-compatible proprietary sizing, P365A, and 
were extracted from a 204 filament strand. These fibres 
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have a larger nominal strain to failure of 3% to 5%, 
and an average elastic modulus of 90 GPa. The epoxy 
resin was diglycidyl ether of bisphenol A (DGEBA) 
with a resin molecular weight of 374. The hardening 
agent was tetraethylene pentamine (TEPA), an ali- 
phatic polyamine. ASTM standard epoxy "dog-bone" 
specimens were fabricated from which an initial 
modulus of 2.80 GPa was determined, which is in 
agreement with values obtained on similar epoxies. 

2.2. Microcomposite fabrication 
The formidability of fabricating the microcomposite 
tapes can be appreciated by first reviewing their phys- 
ical size. The target dimensions of the three-fibre 
microcomposite were 40mm long (20mm gauge 
length), 200 I~m wide, and 50 Ilm thick. The graphite 
and glass fibres were 5.5 and 13 ~tm diameter, respect- 
ively. The interfibre spacing was to be held at 3 I~m 
with a deviation of less than 1 I.tm over the sample 
length. Consequently, the fabrication of the samples 
required special techniques using micropositioners 
and optical microscopes. 

The procedure for the fabrication of the micro- 
composites was broken down into a few basic tasks. 
The fibres were extracted from their yarns, aligned in 
the desired tape configuration, and embedded in an 
epoxy film. Then the undesired edge sections of the 
sample were removed and the resulting three-fibre 
microcomposite tape was tabbed for testing in a load 
frame. The load frame was built specifically to test 
microcomposites while under microscopic observa- 
tion. The following sections will briefly describe the 
equipment designed and built to accomplish these 
tasks. Further details are given in Gulino [15]. 

2.2. 1. Extract ion 
Three types of fibres were used in building the micro- 
composite samples. They were IM-6 graphite fibres, 
and SK and ET glass fibres. As mentioned, the IM-6 
and SK fibres constituted the actual sample, while the 
ET fibres, with a diameter of about 30 gm, were used 
in creating the epoxy film surrounding the fibres of 
interest. After curing, the ET fibres were removed to 
obtain the desired microcomposite tape. 

To obtain single graphite fibres, a 40 cm section of 
graphite tow was removed from the spool and placed 
in a basin filled with water. The graphite fibres were 
carefully separated, and 80 single fibres were extracted 
by pulling one end out of the basin on to a Teflon 
sheet. A 30 cm segment of each fibre was removed and 
stored, and the remaining segment was used to deter- 
mine the cross-sectional area of the fibre using a 
specially built vibroscope [16]. The fibres used in the 
microcomposite tapes were randomly selected from 
this group of 80, and the remainder were tension 
tested to obtain Weibull strength statistics. 

All the single glass fibres were extracted from 50 cm 
segments of strand, and their cross-sectional areas 
were determined. The fibres were separated from the 
strand by repeatedly peeling apart bundles until only a 
single fibre remained. The fibres were supported by a 



Figure 1 Apparatus for aligning the fibres. 

board covered with black velvet cloth so that the 
fibres could be seen easily and would not be damaged 
during separation. The fibres were proof-tested at a 
28.7 cm gauge length. For the SK fibres, the proof load 
was set so that the nominal strain in the fibres would 
be 3% (0.36 N), which would ensure that a graphite 
fibre would break repeatedly before the two glass 
fibres in the microcomposite tape broke. The stiffness 
for each surviving fibre was determined from the 
graph of load against displacement. These SK fibres 
were ordered by stiffness, and adjacent pairs were 
selected for use in the microcomposites. For the ET 
glass fibres, the proof load was 0.39 N, which was 
found to be adequate to ensure that the fibres would 
not break during specimen fabrication. 

2.2.2. Alignment 
Special equipment was built to manipulate and align 
the fibres prior to fabricating the microcomposite 
tape. The equipment consisted of a mechanical system 
of parallel optic rails, X Y and X YZ micropositioners, 
a microscope, and microcapillary arrays on rotational 
stages, as shown in Fig. 1. The microcapillary arrays 
were 0.5 mm thick glass discs with 50 gm holes arran- 
ged in a hexagonal array with an approximately 50% 
volume fraction of holes (Fig. 1). The microcapillary 
arrays held the ends of the fibres creating a parallel 
arrangement of fibres, while the micropositioners were 
used to adjust their positions within the arrangement. 
To view the fabrication process, an optical microscope 
was mounted on an X Y micropositioner above the 
fibres. 

With the aid of the X YZ micropositioner, the ends 
of five glass fibres were threaded vertically through the 
two arrays. Two ET glass fibres were located at the 
edges, and the three centre fibres were SK glass fibres 
of which the outer two were destined for the micro- 
composite. The centre SK glass fibre was used to pull a 
graphite fibre, glued to one end, through the arrays to 
become its replacement (Fig. 2). The microcapillary 
arrays were then rotated from the horizontal plane 
to the vertical plane such that the fibres formed an 
essentially parallel arrangement. 

Next, one set of fibre ends were fixed in a clamp and 
the opposite ends were glued to a cotton thread. The 
cotton threads were fed over rollers where a known 
tensioning weight was added. This procedure pre- 
tensioned every fibre while subjecting the fibre to 
minimal curvature. Next a small, but rigid, dipping 
frame was raised parallel to the fibres using a very stiff 
X Z  micropositioner (Fig. 3). The spacing between the 
resulting planar array of fibres was determined by the 
projection of the fibre positions on to the dipping 
frame surface, which had been polished using standard 
metallographic techniques (Fig. 4). To vary the result- 
ing spacing between the fibres, the arrays were rotated 
around an axis parallel to the length of the fibres, such 
that the resulting spacing on the surface of the dipping 
frame was greatly decreased with respect to the spac- 
ing determined by the holes in the microcapillary 
array. The rotational micropositioners could be posi- 
tioned to within 1 arc minute which permitted small 
adjustments in the spacing between fibres. The space 
between the graphite and each SK glass fibre was 
about 3 gm and with less than a 1 gm deviation over 
the full length of the sample. This requirement often 
necessitated many iterations of rotating the micro- 
capillary arrays, raising the dipping frame and observ- 
ing the resultant fibre spacing. Once the desired spac- 
ing was obtained, the fibres were attached to the 
dipping frame by placing a drop of quick-setting 
epoxy on each end of the dipping frame. 

2.2.3. Dipping 
The role of the two, highly tensioned, ET glass fibres 
was to suppress surface tension effects on the three 
central fibres during the dipping process, as shown in 
Fig. 5. In the absence of external forces, the liquid 
epoxy would surround the fibres forming a cylinder 
along their length. Due to the gravitational forces, the 
liquid within this cylinder was drawn downward along 
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Figure 2 Schematic representation of the fibres posi- 
tioned in the holes of the microcapillary array (non- 
essential holes deleted for clarity). 
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Figure 3 Side view of the dipping frame positioned beneath the 
aligned fibres. 
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Figure 4 End view of the planar spacing obtained upon raising the 
dipping frame onto the fibres. 

the fibres flattening the cylinder. The inward force due 
to the surface tension effects was reacted by the edge 
fibres which enabled the formation of a thin film. 
Without the edge fibres, the surface tension effects 
would destroy the spacing between the fibres achieved 
during alignment. In its design, the top edge of the 
dipping frame was undercut at an angle so that an 
epoxy film would be created only within the rectangu- 
lar border between the two edge fibres and the frame 
ends. The edge fibres were placed approximately 
900 #m from the three centre fibres. 

The thickness and quality of the epoxy film de- 
pended strongly on the viscosity of the liquid epoxy, 
the speed at which the sample was dipped into and 
withdrawn from the liquid epoxy, and the spacing and 
tension in the edge fibres. The film thickness was 
reduced by decreasing the viscosity of the epoxy and 
the withdrawal speed, and by increasing the spacing 
between the ET edge fibres and the pre-tension in 
these fibres. These are not independent effects, and 
changing the value of one variable often imposed 
limits on the values of the others. For example, 
the viscosity was reduced by heating the epoxy. Yet 
the higher the temperature of the epoxy, the shorter 
the pot life which imposed a lower bound on the 
dipping and withdrawal speed. In addition, bubbles 
within the liquid increased the probability that a thin 
film would break during dipping, especially when the 
bubble diameter was of the order of the film thickness. 
Yet the more thoroughly the epoxy is degassed t o  

Figure 5 A free body diagram of the desired sample cut away from 
the edge fibres. The surface tension forces in the vertical direction 
are not shown. 

remove the bubbles, the smaller the time left for dip- 
ping. Spacing the edge fibres further apart created a 
thinner film. Yet if the film was too thin, the film 
would often break during the epoxy curing cycle. The 
higher the tension in the edge fibres, the less they will 
be moved inward by the surface tension which 
resulted in an increased film thickness. Yet increasing 
the tension in the edge fibres increased the chance an 
edge fibre would break during the alignment process. 
Because a mathematical model of all these effects was 
too cumbersome, this process was optimized experi- 
mentally. 

The following conditions were used in controlling 
the epoxy film thickness in the three-fibre micro- 
composite tapes. The edge fibres were pre-tensioned to 
0.20 N, half of the proof load. The epoxy and curing 
agent were mixed at 40~ in stoichiometric propor- 
tions, degassed in a vacuum oven for 7 min and placed 
in a test tube. The dipping frame, which held the 
fibres in a planar array, was lowered into the test 
tube at 1.40 cm min-  1 and subsequently withdrawn at 
0 .56cmmin - t  using a precisely controlled vertical 
slide. The dipping frame was subsequently placed 
horizontally on a Teflon sheet inside an oven, and the 
epoxy was cured at 80 ~ for 3 h, after which the oven 
was turned off and allowed to cool slowly to room 
temperature. 

2.2.4. Removing the edge sections 
The edge sections, consisting of the ET glass fibres and 
part of the epoxy film, were removed by splitting the 
epoxy film symmetrically about the centre group of 
three fibres. This tedious process was accomplished 
using a specially designed apparatus consisting of two 
microscopes for viewing the sample, a set of closely 
spaced parallel razor blades, a rotational stage on to 
which the dipping frame was clamped, a Teflon- 
covered aluminium flat to support the specimen, and a 
system of micropositioners used to lower the blades 
through the epoxy film. Figs 6 and 7 show planar and 
cross-sectional views, respectively, of a specimen with 
removed edge sections. 

2.2.5. Tabbing the microcomposites 
The microcomposites were tabbed by sandwiching 
each end of the microcomposite tape between a square 
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sample was moved away from the steel wafers. A thin 
layer of liquid epoxy was applied to the top surface of 
the steel wafers and to the opposing surfaces on the 
cardboard frame. The sample was returned to its 
previous position and lowered into the epoxy on the 
wafers. Next, the cardboard frame was pressed down 
sandwiching the sample against the steel wafers. The 
microscope objective was then lowered on to the top 
of the slide to apply moderate pressure to the assembly 
while the epoxy was curing. After the epoxy cured, the 
tabbed sample was removed for storage in a desiccator 
until testing. 

Figure 6 Top view of microcomposite sample after edge fibres have 
been removed. 

3. Testing procedure 
The testing of a three-fibre microcomposite tape was a 
detailed process in which the tape was held at a 
constant value of strain, and each break in the graph- 
ite fibre was observed through a plane polariscope 
enabling the load transfer to be visualized due to the 
photoelastic effects in the surrounding epoxy. The 
primary emphasis of the research effort was to charac- 
terize the load transfer around a single fibre, and due 
to the large number of breaks that could be studied in 
each sample and the difficulty in fabricating samples, 
two tapes, samples 11 and 12, were fully tested. Over 
50 breaks had been observed when sample 11 broke at 
3.46% strain, and 29 breaks had been observed in 
sample 12 at 3.10% strain when sample 12 was de- 
voted to a brief study of viscoelastic effects in the 
epoxy. Sufficient information was obtained in the 
testing for the purposes of this study. 

Figure 7 Cross-section of final microcomposite sample. 

steel wafer, covered by a thin layer of adhesive, and a 
thin cardboard frame. The steel wafers minimized the 
deformation in the clamp region, and provided a hard 
flat region for clamping the sample on to the load 
frame. To ensure precise alignment of the microcom- 
posite, a tabbing jig was used. The jig consisted of a 
Teflon-coated template to locate the microcomposite 
tape and the steel wafers, and a plexiglass slide which 
held the cardboard frame in position while the epoxy 
adhesive cured. 

To tab the microcomposite tape, first the dipping 
frame, with the three-fibre microcomposite tape still 
attached, was fastened to the sample holder. By using 
the rotational stage and the X Y Z  micropositioner, the 
tape was aligned such that its vertical projection was 
aligned with the centre of the cardboard frame. This 
positioning was accomplished by viewing the sample 
through a microscope mounted directly above the 
template. The template surface had two centring lines 
scribed on it. These lines were 400 gm apart and were 
placed symmetrically about the centre line. The posi- 
tion for proper alignment was recorded and then the 

3.1. The load frame 
The load frame was built specifically to apply a uni- 
form strain to the microcomposite tape such that each 
break could be located and observed through a micro- 
scope. To accomplish this task a low-profile load 
frame was constructed which mounted on the stage 
of an inverted metallographic microscope. The load 
frame consisted of two moveable clamps that were 
constrained to translate in one direction by a set of 
linear ball bearings that rode on two parallel hardened 
steel shafts. One clamp was fixed to a load cell, which 
had a resolution of 0.01 N, and attached such that 
when the sample was clamped into the load frame the 
mierocomposite axis was coincident with the axis of 
the load cell. The other clamp was driven by a non- 
rotating spindle micrometer. The end of the micro- 
meter was attached to a motor with a stainless steel 
bellows coupling as shown in Fig. 8. The motor could 
translate with the microscope translational stage or 
just the motion of the micrometer. A special fixture 
was made that enabled a sheet polarizer to be placed 
between the sample and the microscope objective. The 
addition of the sheet polarizer allowed the sample to 
be viewed through a plane polariscope. The micro- 
scope was equipped with photographic attachments 
to record the photoelastic patterns. A dial gauge, held 
against the microscope stage, was used to determine 
the location of the fibre breaks along the specimen 
axis. 
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Figure 8 The load frame. 

The load cell and the motor  were independently 
calibrated. The complete load frame was checked for 
accuracy by measuring the stiffness of a light spring 
using both the load frame and an Instron 1130 tensile 
testing machine. The results were within 0.6%. T h e  
stiffness of a pre-tested glass fibre was measured to 
determine if considerable deformation was occurring 
within the clamp regions. Results for the modulus as 
compared to those from the Instron were within 1%. 

In actual testing, a microcomposite tape was clam- 
ped into a load frame, and then loaded at a constant 
elongation rate to specific load level. The nominal 
load levels were determined by obtaining the initial 
modulus of the samples and then computing the loads 
corresponding to 0.1% increments of strain. At each 
load level, the number of breaks and their position in 
the sample were recorded. At selected breaks, meas- 
urements were made which characterized the load 
transfer. Because the matrix was undergoing mild load 
relaxation while the measurements were being made, 
the sample was allowed to recover at no load for at 
least twice the amount  of time that it was under load. 

3.2. Measurement of applied strain 
A crucial aspect was to be able to determine accurately 
the strain in a specimen. Because epoxy contracts 
during curing and cooling, we first calculated the 
residual strain based on a straightforward mechanical 
model of the set-up (including the aluminium dipping 
frame and any pretensioning) and the elastic and 
thermal properties of the materials [15]. This residual 
strain in the graphite fibres was found to be about 
0.05%, which is insignificant. 

The applied tensile strain was determined by three 
different methods: in the first method, which was the 
most accurate, the strain was computed by using 
the relative displacements of the ends of the sample. 
The finite stiffness of the load cell was accounted for in 
this calculation, but any deformation in the tabs was 
neglected. The strain was also calculated by mon- 
itoring the positions of breaks with increasing load, an 
admittedly cruder method, but with consistent results. 
The strain was also estimated by using the initial 
modulus of the sample. This method proved accurate 
at low loads but, as expected, produced deviations as 
the matrix stress strain rule became nonlinear. 
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After testing, each specimen was sectioned at equal- 
ly spaced positions along the length of the specimen to 
measure the cross-sectional area of matrix, and thus, 
to uncover the possibility of any unevenness in strain 
along a specimen. In sample 11, the deviation from the 
average strain was estimated to be less than 5 % of the 
average strain anywhere along the specimen. In 
sample 12, the observed deviation was within 3% over 
three-quarters of the specimen, but the deviation was 
10% at one end of the specimen. The numbers of 
breaks in these regions were affected by this deviation 
but because the average strain was used, and because 
these regions were only a small part of the entire 
length of the specimen, their effect on the analysis is 
negligible. For  example, a 10% deviation in 20% of 
the specimen length for a Weibull shape parameter of 
5 produces only a 2% deviation in the total expected 
number of breaks. 

3.3. T e n s i o n  tes t s  on  the  g raph i t e  f ibres  
Out of the eighty fibres, 65 were not used in micro- 
composite tape fabrication. Of these, 58 were tension 
tested in an Instron 1130 tensile tester at a 20mm 
gauge length and 0.0254min -1 strain rate, using 
standard tabbing techniques. The remaining 7 were 
tension tested at an 8 in. gauge length to confirm the 
fibre elastic modulus. 

4. Analysis for  fibre break progression 
The break progression of the graphite fibre in the 
strained microcomposite tape was modelled by as- 
suming the flaws were distributed along the fibre 
according to a homogeneous, compound Poisson pro- 
cess. The average number of flaws per unit length with 
strength less than or equal to a given stress, s, was 
assumed to follow a power law in stress. Thus the 
resulting distribution for the strength of a single.fibre 
in simple tension has the familiar Weilbull form, as 
seen shortly. 

When a fibre breaks, the fibre retracts locally, pro- 
ducing a shear force in the matrix; but at some dis- 
tance from the break the fibre maintains the previous 
level of stress. In reality, this load recovery length and 
the associated shear profile depend on a variety of 
factors such as the longitudinal stiffness of the fibres, 
the shear stiffness o f  the matrix, the plastic yield 
strength and limiting plastic shear strain of the matrix, 
and the local volume fraction of fibres. A full analysis 
of the specimens in this study will be presented else- 
where [14]. Here, it suffices to proceed with a simpli- 
fied version, in order to make the probability analysis 
tractable. 

As the applied stress is increased, the fibre breaks 
repeatedly until the fragment lengths are too small to 
achieve further increases in stress within the middle 
portion of some fragment. At this point the break 
progression ceases. Thus the fragmentation process 
can be equivalently thought of as  the initiation and 
growth of load recovery regions activated by stress 
sensitive flaws. In the following paragraphs, the num- 
ber of breaks as a function of applied stress will be 



modelled using this concept. Two assumptions will be 
made to simplify the problem: first, the shear stress in 
the load recovery region will be considered constant 
(as though the matrix were perfectly plastic, where the 
plastic flow stress can be interpreted as the average 
shear stress in the load recovery region). Second, the 
interaction of adjacent load recovery regions will be 
ignored. The second assumption is reasonable at 
moderate stresses, but as the stress approaches the 
fragmentation limit, and a large fraction of the fibre 
length is covered by load recovery regions, such inter- 
actions will be significant. 

The expected number of breaks as a function of the 
applied strain will be obtained using two different 
approaches. First, the problem will be solved by con- 
ditioning on the number of observed breaks, whereas 
in the second approach the problem will be solved by 
conditioning on the total number of flaws at a specific 
stress level. Using the first approach, an explicit ap- 
proximation is developed for the mean number of 
breaks in a specimen as a function of stress level. 
Using the second approach, a numerical scheme is 
developed for computing both the mean number of 
breaks at a fixed stress and confidence intervals about 
the mean. It will be possible to assess the importance 
of neglecting interactions between adjacent load re- 
covery regions in the derivation by comparing the 
present approximations with results from a Monte 
Carlo simulation developed by Henstenburg and 
Phoenix [13]. 

4.1. Approximate probabilistic model for 
break progression 

According to the Poisson model, the probability of n 
flaws occurring with strength less than or equal to 
stress, s, and in length, L, is 

P IN(s, L) n] [la(s, L)]" - -  e - It(s' L) 
n! 

s~>O,L~>O 

(2) 

where ~t(s, L) is the mean number of flaws with 
strength less than or equal to s, within length L, and n 
is a non-negative integer. 

The mean of this Poisson distribution, I~(s, L), is 
assumed to follow a power law in stress such that 
the fibre strength distribution is a two-parameter 
Weibull distribution. That  is we take 

where 

.(s, L) = X(s)L (3) 

Ms) = (1/L o) (S/So)~ (4) 

is the mean number of flaws per unit length with 
strength less than or equal to s, and where P, So and L o 
are positive constants. 

The parameter p becomes the Weibull shape para- 
meter and s o the Weibull scale parameter, respectively, 
for the strength of fibres of length L o. This follows 
from the fact that the probability of one or more flaws 
existing in length L, with strength less than or equal to 

s, is 

P[N(s ,L )  >~ 1] = 1 - P [ N ( s , L )  = 03 

= 1 -  e (L/Lo)(S/So)p (5) 

where the last expression is the desired Weibull dis- 
tribution when L is taken as L o. Indeed this result 
allows us to scale to an arbitrary length L, as is well 
known. 

4. 1.1. Approach I: condit ioning on the 
number of  breaks 

To model the progression of the number of breaks 
with stress, the flaws with strength less than or equal 
to s are divided into two categories; flaws which cause 
breaks, and flaws which lie within the load recovery 
regions of breaks and are thus obscured. The situation 
is depicted in Fig. 9. This representation can be quan- 
tified by introducing the following random variables: 

Nt(s, L) = the total number of flaws in length, L, 
and with strength less than or equal to s. 

Nb(S, L) = the number of breaks in length, L, and at 
stress less than or equal to s. 

No(s, b) = the number of flaws obscured within the 
load recovery region around a fibre break at stress less 
than or equal to s, where b denotes the length of the 
load recovery region. 

The relationship between these variables is ex- 
pressed by the equality 

Nb 

N u = N t - ~ No, j (6) 
j = l  

where j is the j th observed break. By taking expecta- 
tions, the mean number of breaks is determined as 

E(Nb) = E(Nt) - E (  \j=l ~ N ~  (7) 

where E(Nt) is the expected value of the Poisson 
random variable, Nt, and is equal to ~t(s, L). 

Before applyin stress 

Stress @ 

X 

�9 

@ 

Position on f ibre 

After application ofstress~ s 1 

Stress 
�9 o 

X 1 Position on fibre X 

Flaw with strength more than applied stress 

0 Flaw obscured by load recovery region around a break 

�9 Break 

Figure 9 Two-d imens iona l  represen ta t ion  of flaws wi thin  a single 

fibre before and  after app l i ca t ion  of the stress, s a. 
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To complete this derivation the expectation of the 
sum of the number of flaws obscured must be approx- 
imated. This task may be accomplished by relating the 
number of flaws obscured to the number of flaws in a 
10ad recovery region (lrr), that is the region in stress 
and position bounded by the applied stress, s, and the 
stress profile around a break. The mean number of 
flaws within such a region, g(lrr), is determined by 
integrating the flaw density (derivative of Equation 4) 
over this region. Because the flaws are distributed 
according to a compound Poisson process, and there- 
fore a process with independent stationary increments 
along the fibre, the calculation of the mean number of 
flaws within the load recovery region does not depend 
on its longitudinal location. Thus we have 

g(lrr) 

where 

t sd/,4x Is 
= 2 1/Lo(s ' /So)P-l(p/so)ds 'dx 

dO 4x x/d 

: 

\ p  + l /  Lo 

= (sd/2z) (9) 

is the load recovery length, z is the shear stress on the 
fibre surface, and d is the fibre diameter. 

The number of flaws within a given load recovery 
region, Nl,,  follows a Poisson distribution with mean, 
la(lrr). The probability that k flaws are within the load 
recovery region is 

P(NIr r = k) -- [g'lrr']ke-~~ ~ (10) 
k! 

The expected value of the total number of obscured 
flaws may be calculated by conditioning on the num- 
ber of observed flaws along the fibre. Thus the 
expectation can be expessed as 

E(jN__~I N o ) =  k__~ 1E[(j=~t No) N b =  k]  

P(N b = k) (11) 

The expectation within the sum can be simplified by 
using the independence of disjoint areas, neglecting 
interactions between adjacent load recovery regions, 
and then using an equivalent representation for the 
number of obscured flaws in terms of the Poisson 
random variable, Ni t  r. We have 

= k ~ mP(N,~ = m + llNl~r /> 1) (12) 
m = l  

which reflects the fact that one of the flaws in the load 
recovery region is actually the cause of the break, and 
thus, cannot be counted as obscured. Upon substitu- 
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tion of Equation 12 into Equation 11, we obtain 

E N O = k P ( N  b = k) 
j k = l  

x ~ raP(Nit r = m + 1 I Njrr ~ 1) 
m = l  

= E(Nb) ~ mP(Nlr ~ = rn + 1]N1, >~ 1) 
m = l  

(13) 

Upon evaluating the infinite sum in Equation 13 
(which requires calculating a conditional probability 
using Equation 10), we obtain 

(u=~ 1 ) ( ~ t ( l r r )  1)  (14) E No = E(Nb) 1 e -~0m j 

Upon substituting Equation 14 into Equation 7, we 
obtain an estimate of the mean number of breaks as 

E(Nb) = g(s ,L)(  1 - e - " ~  (15) 
g(lrr) J 

This equation can be nondimensionalized directly by 
first nondimensionalizing the expression in the 
exponent. We write 

p 1 
g(trr) = ( ~ ) ( s d / 2 T ) ~ o ( S / S o ) P  

= (16) 

where 

s* = ( 2~L~ Y/ 'p  + I, 
\~0-So ,] So (17) 

The only term left to nondimensionalize is g(s, L). We 
write 

= L o k s o /  (18)  

where 

b* = (2zL~ -p/t~ 
\ d~so / L o (19) 

is a normalizing length. Dividing s* by b* yields the 
simple relation 

s* 2z 
- ( 2 0 )  

b* d 

which has the interpretation that when the stress 
equals s*, the load recovery length is b*. The load 
recovery length consists of the length for load recovery 
from both ends of the broken fibre. Note that the 
nondimensionalization in Henstenburg and Phoenix 
[13] is equivalent to the nondimensionalization de- 
veloped here, except that the dimensionless length, h*, 
there is half the quantity, b*, here. 

The mean number of breaks in terms of the non- 
dimensional parameters is 

E(Nb ) = ( L ' ~ ( p +  l ~ ( s * ~  
; / 

x {1 -- exp[- -  p/(p + 1)](s/s*) p+I}  (21) 



Normalizing the expected number of breaks by L/b*, 
yields the break density, denoted A, and normalizing 
the stress s, by s*, yields the nondimensional stress, 
denoted ~. Thus, in terms of the nondimensional 
variables, Equation 21 becomes 

A = ( ~ 1 ) o - 1 ( 1 - - e x p [ - - [ p / ( p +  l ) ]c lP+l])  

(22) 

4. 1.2. Approach I1: cond i t ion ing  on the total 
number  o f  f laws at a f ixed stress level 

The break progression can be described in greater 
detail by computing the probability of all possible 
outcomes at a fixed stress level, s. By conditioning on 
the total number of flaws with strength less than s, 
each flaw can be placed according to one of two 
possible outcomes: the flaw can either be observed as a 
break or obscured by the load recovery region of an 
existing break. For  each possible number of total 
flaws, n, there are at most n breaks. The outcome of i 
breaks given j flaws will be represented by Si,j, 
0 ~< i ~< j, 0 ~< j, which may be thought of as the states 
of a Markov chain [17]. In order to calculate the 
probability for each state, we must first determine 
transition probabilities from state to state. In this 
analysis, the flaws are viewed as being placed sequen- 
tially. The first flaw will always move the process to 
the state, S1;1, because a break is certain. The next 
flaw causes the process to move either to $1,2 or to 
$2, 2. Generally if the flaw falls within the stress- 
position space that is not in a load recovery region, the 
flaw will register as a break. If it does not cause a 
break, it must have fallen within the load recovery 
region of another flaw. Thus, the addition of a flaw 
increases the number of observed breaks by either one 
or zero, and the placement of each flaw can be viewed 
as a transition of a random process between states. 
The transition probability of moving from Si,j to 
Si,j+ 1 is defined as T~, and therefore the transition 
probability of moving from S~,j to S~+ 1,j+ x must be 
( 1  - T~). The set of all possible states and the trans- 
itions between states can be represented by a triangu- 
lar grid as shown in Fig. 10. 

Conditioned on a fixed number of flaws, N t = j, the 
probability of a flaw falling within a subset, A, of the 
entire permissible region is [17] 

g(A) 
P [F law lies within region A IN t = j ]  - 

g(s, L) 

(23) 

Thus because overlap between adjacent load recovery 
regions is ignored, we have 

ila(lrr) 
T~ - (24) 

g(s, L) 

By using the transition probabilities, the probability 
for each progressive state may be found from 

P,,j = T~P~,j_ 1 + (1 - T , _ ~ ) P , _ L j _  1 (25) 

for i ~< j ~< Art, where P~, j is the probability of being in 
state St, j. The probability of observing i breaks, P~, is 

0 

0 1 2 3 4 5 6 

$1,2 $1,3 S1,4 

~ si,/ si, j§ \ 

\ \ s . , . .1 . . .  
S3~ 3 �9 - - - -s163163 

Figure 10 Grid  represen ta t ion  of all  possible  states, Si.j, and  all 

possible  t rans i t ions  between the states. 

thus 

P, , )P (N  t = j )  (26) 
j=i 

Because P(Nt = j) is a probability mass function with 
finite moments, the series can be truncated without 
significantly affecting the probability calculation for 
subsequent states. The process was terminated for a 
given i, at a value o f j  where the probability o f j  flaws 
occurring was less than 10-lO, a n d j  was greater than 
the expected number of flaws at the particular value of 
the applied stress. The latter constraint was imposed 
so that the process would not be terminated pre- 
maturely. Also, the process was truncated at state i 
when the probability of being in state i was less than 
10 -1~ , where again i had to be greater than the 
expected number of flaws. 

Once the probabilities for each state were known, 
symmetric confidence intervals (K', K"), with confid- 
ence coefficient 1 -  ~, were determined. The lower 
limit, K', on the confidence interval was found by 
determining the largest integer k such that Pk <% ~/2. 
The upper limit, K", was found by determining the 
smallest k such that Pk >t 1 -- C~/2. The mean number 
of breaks, E(Nb), was computed by definition, 

/max 

E(Nb) = ~ iP i (27) 
i=1  

where the applied stress, s, is implicit. 

4.2. Comparison of the mean number of 
breaks with results from Monte Carlo 
simulation 

To check the accuracy of these approximations, the 
variation break density, A, with the nondimensional 
stress, c~, was compared to results obtained by a 
Monte Carlo simulation of the full problem using the 
software of Henstenburg and Phoenix [13]. In the 
simulation, the overload regions were allowed to 
interact. The approximate method displayed close 
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Figure 11 Comparison of the approximate model ( p = 8, - - -  
P = 4) for break progression with the average of five runs of a 
simulation [13] ( + P = 8, *P = 4). 

agreement with the simulation up to a nondimen- 
sional stress value of one, as shown in Fig. 11. The 
expected fraction of the gauge length, as a function of 
the nondimensional stress, contained within the load 
recovery regions can be shown to be 

{1 - e x p [ -  (p/p + 1)(a)" + ' ]}  (28) 

When cy = 1, and p = 6, approximately two-thirds of 
the gauge length would be in the load recovery region, 
neglecting interaction between adjacent load recovery 
regions. An explanation for the approximate solution 
folding under the simulation results at high stresses is 
that when the stress equals s* (that is, cr = 1) one flaw 
is expected in the load recovery length b*. Thus, the 
largest stress which allows for an accurate approxima- 
tion can be interpreted as the point where the expected 
number  of flaws within the length of a single load 
recovery region equals one. The error in the approx- 
imate model arises from an overestimation of the 
number  of obscured flaws. When the breaks are close 
together, the load recovery regions can overlap, and in 
the approximation, counts a flaw within the overlap 
twice. 

5. Analys is  of  e x p e r i m e n t a l  break 
progression 

First, the results of the tension tests on the singl e 
graphite fibres (20 mm gauge length), are shown in 
the form of a Weibull plot in Fig. 12. The respective 
Weibull shape and scale parameter  values, p = 5.6 
and s o = 5010 MPa,  were estimated by the method of 
maximum likelihood. These results are consistent with 
those obtained by Phoenix et al. [9] on the same spool 
of IM-6 graphite fibre (though an interpolation sug- 
gests very slightly higher strength in the present case). 

To apply the model to the break progression in the 
three-fibre composites, the actual load recovery 
regions were interpreted as zones which could not 
experience a higher stress with increased applied 
strain. By using the length of  the debond plus plastic 
zone at 3.1% applied strain, as seen optically and by 
photoelastic techniques [14, 15], the average shear 

3 1 1 6  
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Figure 12 Weibull plot of tension tests results on single fibres. 
P = 5.6, s = 5010 MPa, L o = 20 mm. 

stress on the fibre was computed to be 61 MPa. Using 
this average value of the shear stress for T, and the 
Weibull shape and scale parameters estimated from 
the tension tests on the 20 mm gauge length fibres, the 
break progression in samples 11 and 12 was predicted 
using the formulae in the previous section. The results 
are shown in Fig. 13. The hypothesis that the break 
progression could be predicted using the Weibull 
strength parameters obtained at a standard gauge 
length of 20 mm, was rejected at the 99% significance 
level as indicated by the dotted lines. 

Because the nondimensional parameters (see 
Equation 21), characterize the break progression, 
these parameters were estimated by a visual best fit to 
the data. The fit, shown in Fig. 14, was carried out 
such that the computed curve began to fold under the 
data as the nondimensional stress exceeded one. The 
estimated Weibull parameters and corresponding 
length, b*, are given in Table I. At the same time, from 
the tension test data obtained at the gauge length of 
20 mm, we also plotted the scale parameter  value as a 
function of length, using the usual Weibull weakest 
link scaling. The results are shown in Fig. 15. Clearly 
the Usual extrapolation of Equation 1 overestimated 
the strength of the fibres at the small, approximately 
0.5 mm, gauge length characteristic of the scale of load 
transfer. 

6. Discussion and conclusions 
The hypothesis that the break progression of the 
graphite fibre in the three-fibre microcomposite tape 
could be predicted using the Weibull strength para- 
meters obtained from tension tests on single fibres at a 
gauge length of 20 mm was rejected at the 99% signi- 
ficance level. This result depends, of course, on the 
accuracy of the strain measurements in each sample. 
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break progression data using a best fit of Equation 21. ( ) 
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T A B L E  1 Estimated characteristic parameters for the break pro- 
gression in samples 11 and 12 

Sample s* (GPa) b* (mm) P 

11 7.6 0.34 5.0 
12 8.8 0.44 7.8 

The measurement of the applied strain was verified by 
the load transfer measurements made on samples 11 
and 12 as reported elsewhere [14, 15]. These measure- 
ments showed no discrepancy between samples 11 and 
12 as a function of strain even though the number of 
breaks observed in sample 11 was almost double the 
number observed in sample 12 at 3.1% strain. 

Although the break progression for each sample 
could be fitted to the Poisson/Weibull model, the flaw 
density (derivative of Equation 4) appeared to differ 
for the two extracted fibres. This observation would 
appear to contradict the conclusion implicit in the 
tension test studies in Phoenix et  al. [9], that the 
Poisson/Weibull model works for graphite fibres with 
one function X(s) for all fibres. It should be pointed 
out, however, that the bulk of the strengths observed 
in their study cover a much lower strain range than 
seen in the break progression here. For  example 
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Figure 15 Log-log plot of the Weibull scale parameter for strength 
against gauge length, showing results from samples ((9) 11 and 
(~ )  12 compared to the Weibull weakest link extrapolation ( ) 
of the tension test data ( z ) at 20 mm. 

5.5 GPa  corresponds to 2% strain, which is in the 
lower tail of Figs 13 and 14. Thus it is possible for the 
homogeneous Poisson model of Equation 4 to apply 
at low stresses but not at higher stresses where differ- 
ent, nonhomogeneous, flaw mechanisms for very high 
strength flaws may be operative from fibre to fibre, or 
at different positions along a fibre. 

The number of breaks versus strain, predicted from 
the Weibull parameters estimated from the tension 
tests, fell below the experimental data. For sample 11, 
the scale parameter at the length scale of load transfer, 
was predicted to be 36% greater than actually deter- 
mined using the experimental break progression. It is 
important to consider the influence of the value of ~ on 
the predictions and experimental results. It can be seen 
from Equations 17 and 19 that the value o f t  has only 
a mild effect on the dimensionless stress s*, but the 
length b* is almost inversely proportional to ~. Thus it 
can be seen that an experimentally different value of 
would, in principle, not affect the early break progress- 
ion in Fig. 14, but would affect the upper termination 
point. Although, a very large error in z is necessary, 
roughly a factor of 3 decrease, for the value of the 
estimated scale parameter, b*, to agree with the Wei- 
bull weakest link estimate. Indeed there is some in- 
dication, from the distributions of Phoenix et al. [9] 
obtained at the highest stresses and shortest gauge 
lengths, that a "levelling off" of strength with decreas- 
ing length may be occurring (see Fig. 5 in [9]) which 
would agree with the results found here. 

On average, both fibres had strengths significantly 
lower, roughly 25%, than predicted by this Weibull 
weakest link scaling (Equation 1). Thus, it is possible 
to perform "typical" tension tests (at say a 20 to 
50 mm gauge length) on single fibres extracted from 
two different spools of the same lot, obtain the same 
Weibull parameters, and then erroneously conclude 
these two spools will yield composites with equivalent 
strength, because the fibre strengths at short gauge 
lengths (near 0.5 mm), which directly affect composite 
strength, may differ substantially. 

These results also have an impact on the use and 
interpretation of the single-fibre composite technique. 
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The differences between fibres in the estimated 
Weibull parameters at short gauge lengths suggest the 
need to test many samples before estimating the inter- 
facial shear strength. Moreover, the estimation of the 
interfacial shear strength using the single-fibre com- 
posite technique requires the fibre strength at short 
gauge lengths and therefore extrapolation of tension 
test results may lead to poor estimates of the inter- 
facial shear strength. In addition, this study points out 
the weakness in using only the final fragment distribu- 
tion in the computation of the interracial shear stress, 
because there is more than one combination of b*, s*, 
and the interfacial shear stress which could produce 
the same average fragment length. 
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